Title: *In vivo* actinium-226 SPECT imaging for preclinical theranostic radiopharmaceutical development

Authors: Helena Koniar¹, Aidan Ingham¹, Luke Wharton¹, Cristina Rodriguez-Rodriguez², Peter Kunz³, Valery Radchenko¹, Hua Yang¹, Arman Rahmim², Carlos Uribe⁴, Paul Schaffer¹

Employer:

- 1. Life Sciences Division, TRIUMF
- 2. University of British Columbia
- 3. Accelerator Division, TRIUMF
- 4. BC Cancer

Introduction:

²²⁵Ac-radiopharmaceuticals have tremendous potential for targeted alpha therapy, however, ²²⁵Ac ($t_{1/2}$ =9.9d) lacks a direct gamma emission for imaging. ²²⁶Ac ($t_{1/2}$ =29h) is a promising element-equivalent radionuclide for preclinical evaluation of ²²⁵Ac-radiopharmaceuticals. ²²⁶Ac has two gamma emissions (158keV and 230keV) ideal for SPECT imaging and four alpha emissions from the decay of its progeny ²²⁶Th ($t_{1/2}$ =30.6m), providing applications as both a diagnostic and therapeutic isotope. This work is the first feasibility study for ²²⁶Ac SPECT imaging *in vivo* and validation of preclinical biodistribution and dosimetry estimates for ²²⁵Ac-radiopharmaceutical development.

Methods:

²²⁶Ac was produced at TRIUMF (Vancouver, Canada) with its Isotope Separator and Accelerator (ISAC) facility. ²²⁶Ac-TATE was radiolabelled with TATE from a preclinical radiopharmaceutical developed for ²²⁵Ac-therapy targeting neuroendocrine tumours (NET). Mice with AR42J tumour xenografts were injected with 2MBq of ²²⁶Ac-TATE and scanned at 1h, 2.5h, 5h, and 24h post injection with the VECTor microSPECT/CT (MILabs, Netherlands) using an extra ultra-high sensitivity collimator. Quantitative SPECT images were reconstructed including attenuation and scatter corrections. Image-based ²²⁶Ac activity measurements were assessed from volumes of interest within tumours and organs. Imaging data was compared with *ex vivo* biodistributions via gamma counter measurements. *S*-values for the ²²⁵Ac and ²²⁶Ac decay chains were derived from Monte Carlo simulations. Dosimetry estimates were calculated from image-based time activity curves (TAC).

Results:

In vivo quantitative SPECT images of ²²⁶Ac activity distribution were demonstrated, to the best of our knowledge, for the first time. Image-based activity measurements in the tumours matched with *ex vivo* biodistribution within 8%. Kidney and bladder activity measurements were also in agreement. TACs were fit individually to each animal, allowing personalized dosimetry estimates. **Conclusions:**

We have established the ability of ²²⁶Ac quantitative SPECT imaging to accurately determine actinium biodistribution with an *in vivo* tumour model. Future work will compare the pharmacokinetics of imageable ²²⁶Ac-radiopharmaceuticals with matched therapeutic ²²⁵Ac-radiopharmaceuticals.