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Strategies for Motion Tracking
and Correction in PET
Arman Rahmim, PhDa,*, Olivier Rousset, PhD, PDa, Habib Zaidi, PhDb

Recent developments in three-dimensional (3D)
PET systems have enabled the spatial resolution to
reach the 2- to 5-mm full-width-at-half-maximum
(FWHM) range [1]. With such improvements in spa-
tial resolution, even small amounts of motion dur-
ing PET imaging become a significant source of
resolution degradation. In other words, increased
spending on new-generation scanners can be fully
justified only when appropriate motion correction
methods are considered, to achieve the true resolu-
tion of the scanner [2]. To demonstrate, the effective
resolution of an image FWHMeff can be written as

FWHMeff 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FWHM2

tomograph 1 FWHM2
motion

q
ð1Þ

where FWHMtomograph denotes the intrinsic resolu-
tion of the scanner and FWHMmotion is the FWHM
of the distribution of the patient’s motion. With
FWHMtomograph having become comparable to

(and no longer much larger than) FWHMmotion, it
is therefore essential to develop and implement
accurate patient motion correction techniques.

Motion correction methods developed for single-
photon emission CT (SPECT) are not necessarily
applicable to PET because thethey may rely on the
time-dependence of projections in SPECT (due to
a rotating head or heads), which is not the case in
PET. Nevertheless, a number of other methods im-
plemented in SPECT are equally applicable to PET
(and vice versa) and are reviewed in this work.
This article has been broadly categorized into the
review and discussion of advanced correction
methods for the cases of unwanted patient motion,
motion due to cardiac cycles, and motion due to re-
spiratory cycles. Most of the existing literature on
the first type of motion has been investigated and
implemented in brain PET imaging because the
last two types of motion (which are dominant in
whole-body and cardiac PET imaging) are absent
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in this case. Therefore, the first section discusses
motion correction methods in brain PET imaging
and the next two sections include an overview of
advanced correction methods for cardiac and respi-
ratory cycle motions, respectively. These sections
discuss existing hardware instrumentation and re-
view advanced motion correction algorithms that
make use of such hardware to achieve motion-com-
pensated PET images. Lastly, some important areas
of future research are discussed.

Brain PET imaging

Unlike cardiac- and respiratory-related motions, pa-
tient movements in brain imaging are assumed to
be of rigid nature (ie, modeled as translational
and rotational transformations only). Because a typ-
ical PET brain imaging session can last hours, it is
not reasonable to expect a patient to remain
motionless during this time [3]. A number of
head restraints are common nowadays, such as
thermoplastic masks or neoprene caps that lower
the amount of motion but do not eliminate it [4].
Even with head restraints, typical translations in
the range of 5 to 20 mm and rotations of 1� to 4�

are observed1, depending on the type of mask and
the duration of scan (eg, see Refs. [5,6] and
Ref. [2] in which a study of various types of head
movement, such as those caused by coughing and
leg crossing, has been presented).

Methods to correct for such patient movements
were in the past largely based on correction of inter-
scan movements [7]. These (software-based)
methods typically involve the division of a scan
into a number of frames, followed by spatial regis-
tration of the reconstructed images using mathe-
matical algorithms (eg, see Refs. [8–10]).
Alternatively, hybrid motion estimation/correction
methods have been proposed [11,12] that use for-
ward-projected data to detect brain motions and
incorporate this information into 3D iterative re-
constructions. Nevertheless, motion correction
strategies in emission CT (ECT) that rely exclusively
on emission data are likely inadequate for robust
clinical usage because they (1) depend on the qual-
ity of the scan data, including noise characteristics;
and (2) assume that the activity distribution does
not change significantly within the frames, whereas
the frames are chosen a priori [13]. Because of these
disadvantages, this review focuses on methods that
use external real-time measurements of motion.

Instrumentation

Aside from electromagnetic systems (which suffer
from interference with eddy currents in the metal
within the PET gantry) and acoustical devices
(whose audible signal can be unacceptable espe-
cially for neurologic studies), the following
motion-tracking instruments have been used by
many groups:

1. A video camera–based surveillance system by
Picard and Thompson [14] uses three LEDs at-
tached to the head of the patient. The system
has two charge-coupled device cameras placed
on the gantry of the PET scanner.

2. The system by Goldstein and colleagues [15] is
based on optoelectronic position sensitive detec-
tors and uses an optical triangulation of three
miniature (lamp) lights fixed to the patient’s
head. The large space between the cameras
(1.25 m), however, prevents the use of this sys-
tem in PET scanners that have long and narrow
gantry holes.

3. The currently popular high-resolution (<0.3
mm) POLARIS system [2] is an infrared (IR) op-
toelectronic motion-tracking device that uses
four IR-reflective spheres (Fig. 1). The advan-
tages of the system are that it is commercially
available (<$15,000; Northern Digital Inc.,
Waterloo, Canada) and uses IR light2, so it is in-
sensitive to room lighting conditions and takes
much less disk space to store the IR-tracker out-
put compared with optical image sequences. The
disadvantages of POLARIS it that it has reflective
spheres that need to be affixed in a precisely
known geometry and, similar to all aforemen-
tioned methods, the issue of possible relative

Fig. 1. The POLARIS system uses four IR-reflective
spheres placed in a precisely known geometry. (Cour-
tesy of Northern Digital Inc., Waterloo, Canada; with
permission.)

1 The largest translation typically occurs along the transaxial-(x) axis, and the largest rotation around the axial-(z) axis.
2 A system with charge-coupled device video cameras also sensitive to IR light was used by Menke and colleagues [16]; however, the re-

flectors were affixed to a landmark device that was rigidly attached to the teeth of the subject’s upper jaw, which proved to be inconvenient

for the patients.
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motion between the skin and the skull during
the scan remains potentially problematic, mak-
ing the accuracy of these techniques question-
able. It is a topic of growing and great interest
to the ECT community to minimize or eliminate
the latter problem through innovative methods
and technology.

Motion-correction algorithms

Assuming accurate measurement of patient move-
ment during the scan, a number of approaches to
motion compensation have been proposed.

One method [5,14] involves dividing detected
events into multiple acquisition frames (MAFs).
With the use of an external monitoring system, ev-
ery time the displacement of the patient is mea-
sured to be larger than a specified threshold, the
PET data are saved in a new frame. This step is
then followed by correction of the individually re-
constructed images of the MAFs by way of rotation
and translation, to compensate for the measured
amount of motion (ie, an image-driven approach).

The major limitation of the MAF approach is that
by using a high motion threshold, motion within
the frames is neglected; lowering the motion thresh-
old can result in the acquisition of an increasing
number of low-statistic frames to be reconstructed,
especially in the presence of considerable move-
ment [3]. Lack of an adequate number of acquired
events in the individual frames can, in turn, ad-
versely affect the quality of the final reconstructed
images; an increased number of frames leads to
increased reconstruction times.

An image-driven correction method proposed by
Menke and colleagues [16] involves postprocessing
of the motion-blurred reconstructed images using
deconvolution operators (whose shape is deter-
mined by the measured motion). The technique
was later further refined by combining patient-
specific motion estimates of tissue trajectories
with image deconvolution techniques [17]. Never-
theless, this method has not attracted much atten-
tion because even though it is theoretically
accurate for noiseless data, the deconvolution
process amplifies the noise in the PET data, and
when the movements include significant rotation,
spatially variant deconvolution filters need to be
employed, which increases the computational costs
and can introduce other artifacts [16].

Another possible approach is to model the effect
of motion in (the image-space component of) the
system matrix of the expectation maximization
(EM) algorithm. This approach can be powerful
(eg, see Refs. [18–21]) for compensating cardiac
and respiratory motion, in which assumptions of
rigid motion are violated (this is further elaborated

in later sections). In the context of nongated
motion-contaminated (brain imaging) data, the
approach has been used to incorporate the overall
externally tracked motion into the reconstruction
task [22]. This method, however, is not preferred
for scanners that have the capability to compensate
individually detected events for motion (described
next) because it merely models the overall motion
of the subject and would converge very slowly.

A more accurate approach consists of correcting in-
dividual lines of response (LORs) for motion [23] (ie,
an event-driven approach). Motion correction is per-
formed by transforming the LORs along which the
events are measured to where they would have been
measured if the object had not moved, as shown in
Fig. 2 for the example of an octagonal PET scanner.

The method was elaborated and implemented by
Menke and colleagues [16] and required some
hardware modification to achieve on-the-fly mo-
tion-corrected LORs. In that work, due to hardware
limitations, the corrected LORs where not corrected
by normalization factors that corresponded to the
original detector pairs (along which the events
were detected); instead, the normalization factors
for the transformed LORs were used. This normali-
zation mismatch has recently been shown to result
in artifacts [24].

To solve this problem, one requires a PET scanner
equipped with more specialized hardware to
achieve accurate on-the-fly normalization correc-
tion followed by LOR-transformation [25] or
a PET scanner capable of acquiring data in list-
mode format so that LOR corrections can be accu-
rately performed post acquisition [6].

Beyond the purely event-driven approach
The event-driven approach neglects two issues
[26,27].

Fig. 2. An event that would have been generated at
position j and detected along LORi is instead gener-
ated at position j 0 and detected along LORi ’ because
of motion. From the measured motion information,
one can then transform LORi ’ back into LORi.
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Issue 1 An event that is normally detected can exit
the field of view (FoV) undetected because of mo-
tion, which results in a loss of events that would
normally have been detected. This effect is not
modeled by regular reconstruction methods.

Issue 2 Alternately, an event that is normally not
detected (ie, not in the FoV) may be detected
because of motion. Therefore, after correction for
motion, some detected events may correspond to
no actual detector pairs.

These two effects can occur in two ways: (1) along
the axial direction of the scanner, by way of transla-
tion (Fig. 3) or rotation (not shown); or (2) simi-
larly by way of translation or rotation along the
transaxial direction, but only for scanners that
have gaps between the detectors (an example is
the high-resolution research tomograph [HRRT]
[28], which has an octagonal design with gaps
between the heads, or the hybrid photon detectors–
based brain PET with long axially oriented scintilla-
tor crystals [29]). This effect is shown in Fig. 4 for
the HRRT (for the case of translation).

The presence of these two issues can imply the
need for a more accurate modeling of the image–
data relation into the reconstruction task; other-
wise, neglecting the first issue can produce image
artifacts, as demonstrated by simulations [24,30]
or experimental measurements [27], and neglecting
the LORs obtained in the second case can result in
a decrease of signal-to-noise ratio (SNR) in the re-
sulting images. A number of proposed solutions
to one or both of these issues are reviewed in the
following paragraphs.

A method suggested by Thielemans and col-
leagues [30] addressing issue 1 involves scaling
the counts recorded in the motion-corrected sino-
gram bins to correct for the events that were lost
due to motion. The scale factors are computed by

averaging LOR weighting factors using the mea-
sured motion information. This method can be
thought of as a ‘‘motion precorrection’’ technique
applied to the sinogram bins before the image re-
construction task.

The method investigated by Bühler and col-
leagues [24], similarly addressing issue 1, involves
using the motion information to divide the total
counts in each motion-corrected sinogram bin by
the factor tdetectable/ttotal (ie, the fraction of time
each sinogram bin could have been detected by
the scanner). Aside from the issue of normalization
correction, this method can be shown (although it
is not obvious) to be equivalent to the previous
method; however, this method precorrects the indi-
vidual measured events by related normalization
factors, whereas the previous method, which is ex-
pected to exhibit less noise [30], first sums the
non-normalized motion-corrected LORs and then
performs normalization correction (by an accu-
rately calculated overall factor).

These two methods have two potential difficul-
ties: (1) they may require consideration of noise
enhancement issues, as is done by Thielemans
and colleagues [30] when dividing by small-scale
factors; and (2) they address issue 1 but not issue
2 because they simply discard motion-corrected
events that do not correspond to actual detector
elements. It must be noted that neglecting such
events should not result in image artifacts (unlike
neglecting issue 1) because the patient will be still
sampled enough by the existing detector pairs;
however, it can result in a reduced SNR in the
images because part of the measured signal with
useful information is simply discarded.

Fig. 3. Axial motion can result in LORi not to be de-
tected (i0) [issue (1)] and LORk, which is normally not
detected, to actually be detected (as LORk) [issue
(2)]. The effect shown is due to translation but is
equally valid for rotation.

Fig. 4. Transaxial motion, for scanners with gaps be-
tween the detector heads, can result in the same is-
sues shown in Fig. 3.
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In a comprehensive solution, Qi and Huesman
[31] proposed a reconstruction approach that
addressed both aforementioned issues by way of
modification of the probability system matrix of
the iterative EM algorithm. Momentarily neglecting
various correction terms (eg, normalization, attenu-
ation), the regular EM algorithm can be written
(working in histogram-mode) as

f newðjÞ 5
f oldðjÞ
XI

i 5 1

pij

XI

i 5 1

pijnðiÞXJ

j 5 1

pijf
oldðjÞ

ð2Þ

where f oldðjÞand f newðjÞare previous and current
activity distribution image estimates in the iterative
EM algorithm, n(i) is the number of events detected
along an LOR i, and pij, often referred to as the sys-
tem matrix, is the probability that an emission from
voxel j (j 5 1.J) is detected along an LOR i (i 5
1.I). For a motion-corrected sinogram (wherein
all the events were first corrected for motion before
histogramming), the proposed algorithm is able to
accurately address issues 1 and 2, and can be writ-
ten as

f newðjÞ 5
f oldðjÞ

1
T

Z T

t 5 0

XI

i 5 1

pijd
t
idt

XI

i 5 1

pijnðiÞXJ

j 5 1

pijf
oldðjÞ

ð3Þ

where T is the duration of the scan and dt
i is 1 if an

LOR i is in the FoV at time t and is 0 otherwise.
Normalization correction can subsequently be
included as a precorrection factor (similar to
Ref. [24]) or as an intrinsic component of the
system matrix element. The reader is referred to
Rahmim and colleagues [32] for more details.

This approach has also been implemented
[27,31,32] for list-mode image reconstruction. The
list-mode reconstruction approach has a number
of general advantages compared with the histo-
gram-mode approach [33,34] in the context of
motion correction.

Events are corrected for motion during (and not
before) the image reconstruction task, which means
that the motion-corrected coordinates can be pro-
cessed as continuous variables, therefore potentially
improving the accuracy. Histogram-mode methods
[24] may require time-consuming interpolations
because sinogram bins are not continuous.

Addressing issue 2 is more convenient in list-
mode reconstruction, because in histogram-mode
methods, one would have to extend the sinogram-
space to record all motion-corrected events, even
those that would not have been detected in the
absence of motion. In list-mode reconstruction,
such events are very easily handled.

Furthermore, Rahmim and colleagues [27] have
also shown that with appropriate modifications,
calculation of the motion-averaging term
1
T

R T
t50

PI
i51 pijd

t
idt can be conveniently and accu-

rately performed in image-space (instead of projec-
tion-space). The result for current high-resolution
scanners is that the calculation speed can be im-
proved significantly (eg, the HRRT scanner, with
no axial compression [ie, span 1], has w800 M
sinogram bins compared with only w14 M voxels
in image-space). In projection-space, Carson and
colleagues [35] have proposed to perform the previ-
ous calculation over a randomized subset of the
projection-space only, to produce a fast, practical
algorithm. It has been shown, however, that the
particular randomization method is critical to the
accuracy of the estimated sensitivity factors [36],
particularly because inaccuracies are amplified in
subsequent iterations of the EM algorithm. More ac-
curate (yet more time-consuming) Monte Carlo ran-
domization techniques have been proposed [37].

Motion due to the cardiac cycle

Although a spatial resolution of less than 5 mm is
possible with current-generation PET scanners, the
base of the heart moves 9 to 14 mm toward the
apex, and the myocardial walls thicken from
approximately 10 mm to over 15 mm between
end-diastole and end-systole, as measured from
tagged MR images [38]. Compared with the intrin-
sic resolution of today’s scanners, cardiac motion
can therefore result in significantly blurred images
(Equation 1). The most common approach to car-
diac cycle motions in ECT is gating of the data
into frames, with each frame representing a particu-
lar cardiac phase.

Instrumentation

Gating of the cardiac cycle is most commonly per-
formed with the aid of ECG devices. By convention,
the R wave (which precedes ventricular contraction)
is chosen as the gating signal because it has the
greatest amplitude and is therefore more easily
identified on the ECG. In scanners equipped with
list-mode acquisition capability, sorting of the list-
mode data into gated frames can be performed after
the acquisition [39–42], whereas in conventional
scanners (ie, with histogram-mode acquisition
only), on-the-fly ECG-triggered data acquisition is
employed [43,44].

Typically, the cardiac cycle is divided into 50- to
100-millisecond time frames, and an acquisition
ranging from 5 to 60 minutes is usually acquired.
Most commonly, the obtained cardiac-gated data-
sets (ie, cardiac frames) are independently recon-
structed (Fig. 5). This approach is successful in
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nearly removing the cardiac-motion blurring of the
images; however, it usually produces images that
are much noisier than a reconstruction of the un-
gated data because each gated dataset contains
less statistics than the entire dataset. The clinical
utility of this approach is therefore questionable.

Motion-correction algorithms

The motivation behind advanced correction
methods in cardiac imaging is twofold. First, ad-
vanced correction methods improve the quality of
cardiac PET images (noise, resolution) to enhance
the identifiability of radiotracer uptake defects in
the left ventricle by clinicians, because regions of
decreased radiotracer uptake can be indicative of
hibernating or infracted myocardial tissue [45].
Motion correction is also important when applying
quantitative measures of perfusion and metabolic
parameters in dynamic compartmental modeling
studies [46]. Second, the measurement of motion
itself can be useful for characterizing cardiac func-
tion [47]. Measures such as ejection fraction and re-
gional wall thickening may be derived from
a measure of contractile motion in this way.

The problem of cardiac motion due to the respira-
tory cycle is discussed in a later section [48,49]. In
this section, the authors review a variety of motion
correction approaches that have been proposed in
the literature. A common theme among these ad-
vanced methods is that they seek to move beyond
the conventional gated scheme (see Fig. 5) and
instead seek to obtain images of higher quality by
making collective use of all the gated frames (Fig. 6).

Broadly, three types of general approaches were
reported in the literature: (1) nonrigid registration
of independently reconstructed images; (2) initial
estimation of the motion information from the
gated PET or CT images, which is subsequently
used in a new reconstruction applied to all the

gated frames; and (3) simultaneous estimation of
the motion parameters and the images. Asma and
colleagues [50] theoretically analyzed and com-
pared the first and second general approaches and
showed that the latter was better suited to produce
images of higher quality (similar bias, improved
noise) for standard EM and penalized likelihood al-
gorithms (in which a high degree of smoothing is
not used). A thorough comparison (using analytic,
Monte Carlo simulation, and experimental studies)
between the second and third approach remains to
be performed.

The following summarizes the approaches taken
within the aforementioned three categories:

Category 1
Klein and Huesman [51] developed a sophisticated
motion-estimation approach making use of a non-
uniform elastic-material model to provide accurate
estimates of heart motion (from individually recon-
structed gated frames). These investigators contin-
ued to perform nonrigid/deformed summing of
the gated images using the motion information
(ie, image-driven motion compensation).

Dawood and colleagues [13,52] combined the
acquisition of gated PET data with optical flow tech-
niques to calculate motion vector and to correct for
it using nonlinear registration techniques. A similar
approach, referred to as ‘‘retrospective stacking,’’ was
used to reduce respiratory motion artifacts in onco-
logic imaging [53]. These investigators reported
improvements in contrast-to-noise ratios up to
threefold over gated images and up to fivefold
over ungated data.

Category 2
Brankov and colleagues [54,55] replaced the uni-
form-voxel framework with the use of mesh model-
ing: an efficient image description based on

Fig. 6. In motion-correction gated schemes, individual
images are reconstructed using information from the
complete dataset.

Fig. 5. In conventional gated schemes, the gated
frames are independently reconstructed (in this ex-
ample, N 5 4 gated frames are shown).
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nonuniform sampling (mesh nodes are placed
most densely in image regions having fine detail).
This approach is a natural framework for recon-
struction of motion image sequences, wherein
mesh elements are allowed to deform over time3.
Using a gradient-descent search algorithm applied
to initial cardiac gated images, the investigators
estimated the motion field vector dk/lðxÞ, mapping
a mesh element x from the current frame k to
another frame l. Next, the following motion-
compensated temporal summation was used
when reconstructing each frame k:

f̂ kðxÞ 5
XK

l 5 1

flðx � dk/lðxÞÞ ð4Þ

where flðxÞ is the image estimate for the lth frame
(k 5 1.K). Equation 4 can be applied as an
inter-iteration temporal filter in iterative reconstruc-
tion or as a postreconstruction filter. (Although not
shown here, these investigators added another term
to Equation 4 to account for brightening of the
myocardium as it thickens due to the partial
volume effect.)

This summation/filtering step is therefore able to
improve the SNR obtained in the cardiac images be-
cause it also makes use of information from other
frames when reconstructing a given frame k. It
should be noted, however, that this filtering frame-
work is ad hoc in nature; the following is a discus-
sion of methods performing theoretic-based
four-dimensional (4D) reconstructions.

First, the maximum a posteriori probability
(MAP) image reconstruction approach (with appli-
cation to 4D motion-compensated imaging) is
briefly reviewed. A main drawback with the com-
monly used EM algorithms is that with further iter-
ations, the images become increasingly noisy [56].
As a solution, MAP-based methods4 have been pro-
posed that, in the 3D framework, seek to minimize
variations between voxels and their neighboring
voxels. Instead of maximizing the Poisson log-like-
lihood function L(F), as is the case with the regular
EM algorithm, a particular class of MAP methods
(first used in nuclear medicine by Geman and
McClure [57]) seeks to maximize the MAP function
L(F)� bV(F), where V(F) is a potential function
that decreases in value with less variations for
neighboring voxels (b is a smoothing parameter
set by the user: the higher its value, the greater the
amount of smoothing encouraged in the images).

For instance, the so-called ‘‘3D-MAP-EM one-
step-late’’ (OSL) algorithm, introduced by Green
[58] and aimed to maximize the aforementioned
MAP function, can be written as

f newðjÞ 5
f oldðjÞ

XI

i 5 1

pij 1 b
vVðFÞ

vfj

�����
F 5 Fold

XI

i 5 1

pijnðiÞ
Xj

j 5 1

pijf
oldðjÞ

ð5Þ

This algorithm is able to suppress noise more suc-
cessfully than the regular EM algorithm, which
can be thought of as a special case of the MAP
method, with b 5 0. An observation is that this
approach can be extended to a 4D-MAP algorithm
[59–61] in which one uses a summation of spatial
bsVsðFÞ and temporal btVtðFÞpotential functions
to encourage smoothing between neighboring
voxels in the spatial and temporal directions. The
following paragraphs explain how motion compen-
sation has been incorporated within the 4D-MAP
framework in some of the noted works.

Gravier and colleagues [60,61] initially recon-
structed the gated frames using the fast filtered
backprojection algorithm, followed by low-pass
filtering to reduce the noise. They then used the
optical flow approach developed by Horn and
Schunck [62] to estimate the motion between the
reconstructed images. Finally, they used the
4D-MAP-EM-OSL algorithm while defining

VtðFÞ 5
XK

k 5 1

XJ

j 5 1

�
fkðjÞ �

1

K � 1

XK

l 5 1
lsk

fl/kðjÞ
�

ð6Þ

where fl/kðjÞdenotes the estimated image intensity
(in frame l) at the location corresponding to voxel
j of frame k (considering the motion). In this way,
smoothing is encouraged between voxels in all the
frame sequences while taking the motion of the
voxels into consideration. One is therefore able to
suppress the noise level that is normally obtained
in gated frame images.

In the work of Lalush and colleagues [59], a sim-
ilar 4D-MAP-EM-OSL approach was considered, ex-
cept that motion was modeled and assumed to be
known a priori (and not measured from initial
gated images). The motion vectors are computed
by modeling the left ventricular inner and outer
walls as ellipsoids that undergo affine transforma-
tions (rotation, scaling, and translation) within
each frame. The exact form of the potential function

3 See http://www.ipl.iit.edu/brankov/MIC02_4D.htm for a dynamic demonstration of this method.
4 This method is also referred to as the bayesian method (originally derived from a simple application of Bayes’ rule to image reconstruc-

tion). It is also sometimes referred to as penalized likelihood image reconstruction.
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is also different in this work. It must be noted,
however, that these investigators did not observe
a noticeable degradation when the motion infor-
mation was simply not included in the 4D-MAP
algorithm method (which may have been due to
the limited resolution of their scanner).

The MAP-EM-OSL algorithm as derived by Green
[58] is based on an approximation (and breaks
down for large values of b). In addition, it is a non-
trivial task to select the parameters associated with
the prior/penalty term. These parameters, which
play an important role in the image quality, are of-
ten selected through trial and error. Finally, it is im-
portant to note that the aforementioned methods
treat the same moving object as different temporal
reconstructions that are merely temporally corre-
lated. Nevertheless, a more concrete approach
would involve a truly 4D approach in which the es-
timated deformations are incorporated within
a unified cost function to be optimized (for a single
object). Such an approach has been proposed and
investigated by Qiao and colleagues [18,20], Li
and colleagues [19], and Lamare and colleagues
[56], who also compared implementation method-
ologies. In this approach, the measured nonrigid
motion (estimated from the gated images) is mod-
eled in the image-space component of the system
matrix of the EM algorithm, and as such, a truly
4D EM reconstruction algorithm is achieved. This
approach is very promising due to its accurate and
comprehensive modeling of the relation of a mov-
ing object to detected events. The method has also
been generalized by Qiao and colleagues [18,20]
to incorporate only motions within a user-defined
region of interest.

Category 3
Very commonly in the literature, cardiac motion is
estimated after reconstructions of gated frames. In
the previously mentioned techniques, this extracted
motion information is used in subsequent recon-
structions to yield enhanced images (ie, improved
SNRs). Cao and colleagues [63], however, hypothe-
sized that given the close link between the image
reconstruction and motion estimation steps,
a simultaneous method of estimating the two
would be better able to (1) reduce motion blur
and compensate for poor SNRs, and (2) improve
the accuracy of the estimated motion. Their pro-
posed algorithm works by two-step minimization
of a joint energy functional term (including image
likelihood and motion matching terms). This
work has also been extended by Gilland and col-
leagues [64] from a two-frame approach to the
complete cardiac cycle.

The approach taken by Jacobson and Fessler
[65,66] considers a parametric Poisson model for

gated PET measurements involving the activity dis-
tribution as unknown and a set of deformation pa-
rameters describing the motion of the image
throughout the scan (from gate to gate). By maxi-
mizing the log likelihood for this model, a tech-
nique referred to as joint estimation with
deformation modeling allows one to determine im-
age and deformation parameter estimates jointly
from the full set of measured data. This technique
estimates a single image and N-1 deformations,
whereas the method of Gilland and colleagues
[64] estimates N images and N-1 motion deforma-
tions, thus involving a larger number of unknowns.
At the same time, the cost function used in the arti-
cle by Gilland and colleagues [64] does not involve
deformations in the log-likelihood term, thus po-
tentially simplifying the optimization task. This
trade-off remains to be elaborately studied.

Motion caused by the respiratory cycle

The common approach to the problem of respira-
tory blurring of PET images is respiratory gating
[67] (discussed later); however, two exceptions
can be mentioned.

Respiratory-correlated dynamic imaging

In the work by Nehmeh and colleagues [68],
a method performing respiratory phase isolation
while not making use of gating was implemented
(in lung cancer imaging). A radioactive point source
was set on the patient’s abdomen, and the data were
acquired in very short (eg, 1-second) consecutive
time frames and individually reconstructed. To cap-
ture a specific phase within the breathing cycle, all im-
ages were analyzed, and those with the point source at
a specific (user-selected) position were identified,
with the corresponding sinograms summed and re-
constructed using iterative reconstruction.

Compared with respiratory gating, this method,
although involving significantly more computa-
tion, has the following advantages: (1) it does not
require tracking hardware to monitor and trace re-
spiratory motion (a benefit for small institutions
that do not have a gating system); (2) it allows re-
construction of PET images at any breathing phase
(eg, phase-matching with the CT image data ac-
quired on PET/CT scanners); and (3) it is less sus-
ceptible to irregular breathing and allows the
exclusion of data from irregular breathing cycles.
Similar to the conventional gating approach, how-
ever, it has the disadvantage of less data being
used in each reconstruction, resulting in noisier im-
ages. A closely related respiratory-correlated 4D an-
atomic and functional information technique
acquires the breathing cycle by using a thermometer
in the patient’s breathing airflow inserted into the
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entry of an ‘‘oxygen mask’’ covering mouth and
nose [69].

Nongated motion estimation
and reconstruction

Another alternative to gating is the method pro-
posed by Reyes and colleagues [21]. In this ap-
proach, a measured respiratory motion model is
adapted to each patient’s anatomy through affine
registrations. The resulting estimated motion is in-
corporated into the system matrix of the EM algo-
rithm. Compared with the previous method, this
approach has the advantage of making use of the
entire data for the reconstructions (although not
making use of additional hardware). Nevertheless,
the robustness of the method needs further investi-
gation, given especially the presence of irregular re-
spiratory patterns and interpatient respiratory
variations.

Otherwise, the most common approach is imple-
mentation of respiratory gating. For instance, respi-
ratory-gated PET has been investigated in imaging
of lung cancer to reduce breathing motion artifacts
[53,68,70–76]. In cardiac imaging, combined car-
diac–respiratory gating has been implemented in
human [41,42,77] and animal [39,40] studies.

Instrumentation

A number of instruments are used for measuring re-
spiratory motion [67,78]. Commonly, a pneumatic
bellows is placed around the midabdomen of the
patient, which monitors variation in pressure in
the belt assembly with stretching of the belt during
respiration [41,79]. The Anzai AZ-733V system (An-
zai Medical Co, Ltd., Tokyo, Japan), which uses
a pressure sensor to measure the expansion of the
chest, thus detecting the external respiratory mo-
tion (pressure change) in real time, has been used
by many investigators [42,74].

Another approach involves the real-time position
management respiratory gating system (Varian
Medical Systems, Palo Alto, California) [68,71,80],
which monitors the motion of the chest wall of
the patient by IR tracking of the vertical position
of two reflective markers mounted on a plastic
block (stabilized on the patient’s abdomen). The
system was further refined more recently to enable
the analysis of the marker block motion in all three
dimensions as it moves up and down, forward and
back, and side to side.

Livieratos and colleagues [81] used an inductive
respiration monitor (RespiTrace R250, Studley
Data Systems, Oxford, UK) with an elasticized
belt around the patient’s chest.

In animal (mice) imaging, a respiration sensor
(Graseby Medical Ltd., Watford, UK) was used by
Yang and colleagues [39] to provide the respiratory

signal. The sensor was taped to the animal’s chest
and connected to a high-sensitivity differential pres-
sure transducer.

Beach and colleagues [79] used the POLARIS sys-
tem (described earlier) during cardiac imaging,
which has the advantage of monitoring respiratory
and other unwanted motions. Four IR reflective
markers placed on an elastic-material band are set
around the patient’s mid to lower abdomen. The in-
vestigators refined the methodology using a neural
network approach to decompose monitored patient
motion data into rigid body motion and respiratory
motion, thus allowing the successful correction for
respiratory and rigid body motion using approaches
suitable for each type of motion [82].

Finally, Bruyant and colleagues [83] devised
a robust approach for tracking and compensating
patient motion by combining an emission data–
based approach with a visual tracking system that
provides an independent estimate of motion. The
visual tracking system includes stereo imaging
with sets of optical network cameras with attached
light sources, a calibration phantom (consisting of
seven reflective spheres), a black stretchable gar-
ment with reflective spheres to track chest motion,
and a computer to control the cameras in synchro-
nization with the list-mode SPECT data acquisition.

Many respiratory tracking systems developed ex-
plicitly for radiation therapy applications [78] could
be used for imaging purposes. One such example is
a robotic respiratory tracking system [84]. Further
translational research is required in this area to au-
tomate the acquisition/processing procedures re-
quired for accurate motion compensation in
connection with image-guided radiation therapy.

Respiratory motion-correction algorithm

It should be noted that most of the methods for car-
diac motion correction mentioned in the previous
section are also applicable to advanced respiratory
imaging, assuming that effective respiratory motion
estimation methods are developed. In particular, Li
and colleagues [19] extracted motion information
by adopting the free-form spline model (B-spline)
[85] to register different phases of the CT images,
and used this information in a truly 4D reconstruc-
tion approach (see Category 2 in the section Mo-
tion-Correction Algorithms) to obtain improved
images in terms of spatial resolution and statistical
properties. Examples of this approach (used in a clin-
ical study with a pancreatic tumor) are shown in
Fig. 7 and clearly illustrate its advantages compared
with other data collection procedures. The figure
illustrates reconstructions obtained using the 3D
ungated PET obtained by summing the acquired
4D PET projections in group, the conventional 4D
gated PET, and the model-based 4D PET algorithm
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referenced earlier. It can be seen that the tumor is
better defined using the model-based 4D PET recon-
struction algorithm compared with the conven-
tional 4D gated PET because of the better statistical
properties of the data. The SNRs were 2.21, 1.83,
and 4.17 for the 3D ungated PET, regular 4D gated
PET, and model-based 4D PET, respectively.

Imaging of the heart

In addition to the potential application of the
aforementioned general methods to cardiac and

respiratory motion correction, there are two respira-
tory-dedicated methods for the imaging of the heart
(the first is implemented in projection-space and
the second in image-space) that similarly seek to
obtain images of higher quality compared with
regular respiratory-gating or respiratory-correlated
dynamic imaging.

The work by Livieratos and colleagues [81] per-
forms cardiac imaging by modeling of the respira-
tory motion of the heart as a rigid-body motion.
The motion correction parameters are obtained

Fig. 7. Reconstructed images of 3D ungated PET obtained by summing all the acquired 4D-PET projections (top
row), conventional gated 4D PET (middle row), and model-based 4D PET (bottom row) for a clinical study with
pancreatic tumor. (From Li T, Thorndyke B, Schreibmann E, et al. Model-based image reconstruction for four-
dimensional PET. Med Phys 2006;33:1296; with permission.)
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from an initial series of respiration-only gated im-
ages by way of edge tracking of the left ventricle
[43]. The obtained model is then applied in the
form of rigid-body transformations (ie, translations
and rotations) to the list-mode data event- by- event
(ie, motion correction in projection-space). The list-
mode approach allows one to make maximal use
of the time resolution of list-mode data for inter-
polation of motion parameters, thus potentially
achieving higher accuracy in respiratory motion
compensation. After correction of the data for respi-
ratory motion, these investigators proposed to use
simple cardiac gating for the rest of the imaging
task; however, the authors note that the more ad-
vanced methods presented in the previous section
can be used instead.

Klein and colleagues [86] investigated a 12-pa-
rameter affine motion model for 4D registration
of different respiratory-gated images, which in addi-
tion to the 6 parameters of rotation and translation
allows for 3 scale and 3 skew parameters for non-
rigid motion. This approach, which was based in
the image-space, was applied to doubly gated car-
diac PET sequences because it required images
with high SNR for appropriate registration.

Rigid versus nonrigid modeling of the
respiratory motion of the heart

Although the validity of modeling (ie, approximat-
ing) respiratory motion of the heart as rigid-body
motion has been claimed [81], a number of other
publications suggest that nonrigid modeling of re-
spiratory motion of the heart may be beneficial.
The authors note that the nonrigidity of respiratory
motion of the heart, which is related to it being
pushed and pulled by the diaphragm and other
connected tissue, has been investigated using
a number of modalities. For instance, the gated
CT study by Hoffman and Ritman [87] measured
on dogs recorded an average change of 12% in
the total end-diastolic heart volume during forced
positive pressure inspiration at 15 cm H2O. Using
echocardiography, similar shape changes have
been found in human subjects [88].

Related work by Klein and colleagues [86] in PET
imaging is particularly worth noting. In that work,
quantitative measures of respiratory motion of the
heart were extracted from 10 respiratory-gated pa-
tient studies. Translations between end-inspiration
and end-expiration were often greater than 10 mm
and ranged from 1 mm to over 20 mm (rigid mo-
tion). Moreover, the left ventricle exhibited large
compression factors5 (nonrigid motion)—close to
10% in a number of cases—computed as the

product of the three extension factors along the x,
y, and z directions.

The extension factors were largest along the supe-
rior/inferior axis (w5%), which given the typical
80- to 100-mm dimension of the left ventricle along
this direction, would result in a heart image that
would be 4 to 5 mm too small if motion was as-
sumed to be simply rigid. Compared with the aver-
age 10-mm thickness of the left ventricular wall, this
scaling error may therefore be considerable. With
a high-resolution scanner, however, only small
improvements were actually observed [86] after
performing nonrigid motion modeling, although
it is expected that in next-generation (higher-resolu-
tion) scanners, further improvements may be
observed.

Respiratory-gated imaging of the lung

The two methods mentioned in the Imaging of the
Heart section (based on rigid or non-rigid, 4D af-
fine–transformed modeling of respiratory motion
of the heart) are hardly applicable to imaging of
the lungs, which have a more complicated motion.
In the method proposed by Ue and colleagues [89],
an objective function consisting of (1) the degree of
similarity between a reference image and a de-
formed image and (2) the smoothness of deforma-
tion is identified and optimized using a simulated
annealing algorithm. An expansion ratio (defined
as the ratio of change in local volume due to defor-
mation) is introduced in the degree of similarity
term of the objective function to preserve the total
activity during the motion correction process. The
algorithm allowed to achieve acceptable motion
correction between inspiration and expiration
phase images in phantom and clinical data.

The authors emphasize that this approach is
a motion estimation method. The particular recon-
struction approach of the authors (summing of fi-
nal images) can be substituted by other methods,
as mentioned in the previous section, particularly
those that incorporate the estimated motion from
gated images inside the reconstruction algorithm
(see the section Motion-Correction Algorithms)
and that are expected to result in more favorable
images (although they are more time-consuming).

Areas of future research

In this section, several areas of research in motion
correction that still remain open questions and im-
portant areas demanding further inquiries and re-
search are outlined.

5 The left ventricle was generally largest at inspiration and smallest at end-expiration.
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Current motion tracking devices and correction
methods in brain imaging do not address the occur-
rence of relative motions between the skin and the
skull during the scans. This can imply an inaccur-
acy, because motion-tracking lights or reflectors
only follow the motion of the surface area to which
they are attached (and not necessarily the regions of
interest inside the brain). It is currently a topic of
growing interest to introduce novel methods
of characterizing and correcting for this issue.

Incorporation of accurate coincidental-accidence
(random) and scattered-events correction terms
considering patient motion has received little atten-
tion in the past [22,30,32] because normalization/
attenuation correction and LOR transformations
have been the major issues. In this regard, it is noted
that current random and scatter estimation tech-
niques commonly assume a static patient, and
therefore, further attention needs to be paid to
this topic [90].

It remains an open task to theoretically analyze
and thoroughly compare methods in which cardiac
motion and respiratory motion are estimated (1)
before the application of an advanced image recon-
struction algorithm (that makes use of the esti-
mated motion) or (2) simultaneously with the
image reconstruction task [18,21,63,91].

The principal component analysis method elabo-
rated by Wernick and colleagues [92] is a very effi-
cient and natural framework for fast 4D image
reconstructions. Although the method was devel-
oped for the motion-free object assumption, it
has also been shown to work well in reconstructing
cardiac image sequences [93] (which can indicate
that the method is somehow able to intrinsically
capture and incorporate motion information).
More work is needed in this area to shed light on
the potential of this technique to include accurate
motion compensation [61].

Evaluation and clinical validation of algorithms
developed to improve image quality is inherently
difficult and sometimes unconvincing, particularly
when applied to clinical data in the absence of
a ‘‘gold standard.’’ There is a clear need for guide-
lines to evaluate image enhancement and analysis
techniques and other image processing issues in
PET. Different approaches have been suggested to
judge image quality when evaluating image correc-
tion and reconstruction algorithms. Because the
‘‘best’’ algorithm can only be selected with respect
to a certain task, different ‘‘basic’’ performance mea-
sures can be used.

One of the most active areas of research and de-
velopment in radiologic imaging has been the ad-
vanced physical anthropomorphic phantoms and
computational models that represent the human
anatomy [94]. One such computational model is

the 4D nonuniform rational B-spline surfaces–
based cardiac-torso (NCAT) model developed by
Segars [95] that uses mathematical formulae and
the size, shape, and configurations of the major tho-
racic structures and organs such as the heart, liver,
breasts, and rib cage to achieve realistic modeling.
Incorporation of accurate models of cardiac and re-
spiratory physiology into the current 4D NCAT
model was a significant step toward accounting
for inherent cardiac and respiratory motion not
considered in the previous models. Paganetti [96]
reported on the simulation of time-dependent ge-
ometries within a single 4D Monte Carlo simula-
tion using the GEANT4 Monte Carlo package.

Likewise, many physical static anthropomorphic
phantoms were developed in corporate settings,
but very few dynamic torso phantoms are commer-
cially available (and all of these are specifically de-
signed for the assessment of cardiac scanning
protocols and ejection fraction calculation soft-
ware). Many academic investigators have built dy-
namic physical phantoms to meet their research
needs in cardiac imaging [97–99]; however, similar
to commercial systems, virtually all of them do not
incorporate respiratory motion modeling. More ad-
vanced technologies allow the construction of dy-
namic phantoms allowing modeling of respiratory
motion [100]. One interesting design is the plat-
form developed by Fitzpatrick and colleagues
[101] that is capable of programmable irregular lon-
gitudinal motion (artificially generated on a spread-
sheet or extracted from respiratory monitoring files)
to simulate intrafractional respiratory motion.

Summary

In this article, the authors review advanced correc-
tion methods in PET for the cases of unwanted pa-
tient motion and unwanted motion due to cardiac
cycles and respiratory cycles. Nearly all the work re-
lated to the first type of motion has been in brain
PET imaging. The use of an external motion-track-
ing device (and not solely relying on the emission
data) is attractive and will become popular for
high-resolution PET imaging in the near future.

In brain PET imaging, given the rigid nature of
motion, it is more accurate to perform motion cor-
rections in projection-space than in image-space to
make maximal use of the time resolution of data. A
number of reviewed works have also observed and
proposed solutions to complications caused by
the motion-based interactions of LORs that are nor-
mally detectable and those that are not (eg, axially
out of the FoV or passing through detector gaps).

In advanced cardiac and respiratory correction
schemes, the authors have observed a general at-
tempt to move beyond the noisy images obtained
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by cardiac- and respiratory-gated data that are indi-
vidually reconstructed, to advanced techniques that
make use of novel motion estimation and image re-
construction applications to obtain images of en-
hanced quality (improved SNR and resolution). It
is observed from the works reviewed in this article
that a general theme is the use of increasingly so-
phisticated software to make use of existing ad-
vanced hardware, and that the field of motion
correction in high-resolution PET is open to future
novel ideas (hardware, and especially software)
aimed at improving motion detection, characteriza-
tion, and compensation.
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